skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Abatzoglou, John"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 1, 2026
  2. Abstract The area burned in the western United States during the 2020 fire season was the greatest in the modern era. Here we show that the number of human‐caused fires in 2020 also was elevated, nearly 20% higher than the 1992–2019 average. Although anomalously dry conditions enabled ignitions to spread and contributed to record area burned, these conditions alone do not explain the surge in the number of human‐caused ignitions. We argue that behavioral shifts aimed at curtailing the spread of COVID‐19 altered human‐environment interactions to favor increased ignitions. For example, the number of recreation‐caused wildfires during summer was 36% greater than the 1992–2019 average; this increase was likely a function of increased outdoor recreational activity in response to social distancing measures. We hypothesize that the combination of anomalously dry conditions and COVID‐19 social disruptions contributed to widespread increases in human‐caused ignitions, adding complexity to fire management efforts during the 2020 western US fire season. Knowledge of how social behavior changes indirectly contributed to the increased number of ignitions in the 2020 wildfire season can help inform resource management in an increasingly flammable world. 
    more » « less
    Free, publicly-accessible full text available February 28, 2026
  3. Abstract Lightning is a major source of wildfire ignition in the western United States (WUS). We build and train convolutional neural networks (CNNs) to predict the occurrence of cloud‐to‐ground (CG) lightning across the WUS during June–September from the spatial patterns of seven large‐scale meteorological variables from reanalysis (1995–2022). Individually trained CNN models at each 1° × 1° grid cell (n = 285 CNNs) show high skill at predicting CG lightning days across the WUS (median AUC = 0.8) and perform best in parts of the interior Southwest where summertime CG lightning is most common. Further, interannual correlation between observed and predicted CG lightning days is high (medianr = 0.87), demonstrating that locally trained CNNs realistically capture year‐to‐year variation in CG lightning activity across the WUS. We then use layer‐wise relevance propagation (LRP) to investigate the relevance of predictor variables to successful CG lightning prediction in each grid cell. Using maximum LRP values, our results show that two thermodynamic variables—ratio of surface moist static energy to free‐tropospheric saturation moist static energy, and the 700–500 hPa lapse rate—are the most relevant CG lightning predictors for 93%–96% of CNNs depending on the LRP variant used. As lightning is not directly simulated by global climate models, these CNNs could be used to parameterize CG lightning in climate models to assess changes in future CG lightning occurrence with projected climate change. Understanding changes in CG lightning risk and consequently lightning‐caused wildfire risk across the WUS could inform fire management, planning, and disaster preparedness. 
    more » « less
    Free, publicly-accessible full text available November 28, 2025
  4. Background As fire seasons in the Western US intensify and lengthen, fire managers have been grappling with increases in simultaneous, significant incidents that compete for response resources and strain capacity of the current system. Aims To address this challenge, we explore a key research question: what precursors are associated with ignitions that evolve into incidents requiring high levels of response personnel? Methods We develop statistical models linking human, fire weather and fuels related factors with cumulative and peak personnel deployed. Key results Our analysis generates statistically significant models for personnel deployment based on precursors observable at the time and place of ignition. Conclusions We find that significant precursors for fire suppression resource deployment are location, fire weather, canopy cover, Wildland–Urban Interface category, and history of past fire. These results align partially with, but are distinct from, results of earlier research modelling expenditures related to suppression which include precursors such as total burned area which become observable only after an incident. Implications Understanding factors associated with both the natural system and the human system of decision-making that accompany high deployment fires supports holistic risk management given increasing simultaneity of ignitions and competition for resources for both fuel treatment and wildfire response. 
    more » « less
  5. Background Near-term forecasts of fire danger based on predicted surface weather and fuel dryness are widely used to support the decisions of wildfire managers. The incorporation of synoptic-scale upper-air patterns into predictive models may provide additional value in operational forecasting. Aims In this study, we assess the impact of synoptic-scale upper-air patterns on the occurrence of large wildfires and widespread fire outbreaks in the US Pacific Northwest. Additionally, we examine how discrete upper-air map types can augment subregional models of wildfire risk. Methods We assess the statistical relationship between synoptic map types, surface weather and wildfire occurrence. Additionally, we compare subregional fire danger models to identify the predictive value contributed by upper-air map types. Key results We find that these map types explain variation in wildfire occurrence not captured by fire danger indices based on surface weather alone, with specific map types associated with significantly higher expected daily ignition counts in half of the subregions. Conclusions We observe that incorporating upper-air map types enhances the explanatory power of subregional fire danger models. Implications Our approach provides value to operational wildfire management and provides a template for how these methods may be implemented in other regions. 
    more » « less
  6. The increasing prevalence of low snow conditions in a warming climate has attracted substantial attention in recent years, but a focus exclusively on low snow leaves high snow years relatively underexplored. However, these large snow years are hydrologically and economically important in regions where snow is critical for water resources. Here, we introduce the term “snow deluge” and use anomalously high snowpack in California’s Sierra Nevada during the 2023 water year as a case study. Snow monitoring sites across the state had a median 41 y return interval for April 1 snow water equivalent (SWE). Similarly, a process-based snow model showed a 54 y return interval for statewide April 1 SWE (90% CI: 38 to 109 y). While snow droughts can result from either warm or dry conditions, snow deluges require both cool and wet conditions. Relative to the last century, cool-season temperature and precipitation during California’s 2023 snow deluge were both moderately anomalous, while temperature was highly anomalous relative to recent climatology. Downscaled climate models in the Shared Socioeconomic Pathway-370 scenario indicate that California snow deluges—which we define as the 20 y April 1 SWE event—are projected to decline with climate change (58% decline by late century), although less so than median snow years (73% decline by late century). This pattern occurs across the western United States. Changes to snow deluge, and discrepancies between snow deluge and median snow year changes, could impact water resources and ecosystems. Understanding these changes is therefore critical to appropriate climate adaptation. 
    more » « less
  7. Climate change increases fire-favorable weather in forests, but fire trends are also affected by multiple other controlling factors that are difficult to untangle. We use machine learning to systematically group forest ecoregions into 12 global forest pyromes, with each showing distinct sensitivities to climatic, human, and vegetation controls. This delineation revealed that rapidly increasing forest fire emissions in extratropical pyromes, linked to climate change, offset declining emissions in tropical pyromes during 2001 to 2023. Annual emissions tripled in one extratropical pyrome due to increases in fire-favorable weather, compounded by increased forest cover and productivity. This contributed to a 60% increase in forest fire carbon emissions from forest ecoregions globally. Our results highlight the increasing vulnerability of forests and their carbon stocks to fire disturbance under climate change. 
    more » « less
  8. Background The rising occurrence of simultaneous large wildfires has put strain on United States national fire management capacity leading to increasing reliance on assistance from partner nations abroad. However, limited analysis exists on international resource-sharing patterns and the factors influencing when resources are requested and deployed. Aims This study examines the drivers of international fire management ground and overhead personnel deployed to the United States. Methods Using descriptive statistics and case examples data from 2008 to 2020, this study investigates the conditions under which international personnel are deployed to the United States and their relationship to domestic resource strain. Factors such as fire weather, fire simultaneity, and the impact on people and structures are analysed as potential drivers of demand for international resources. Additionally, barriers to resource sharing, including overlapping fire seasons between countries are examined. Key results The findings indicate that international personnel sharing is more likely when the United States reaches higher preparedness levels, experiences larger area burned, and when fires pose a greater impact on people and structures. However, overlapping fire seasons can limit the ability to share resources with partner nations. Conclusions and implications Understanding the factors influencing resource sharing can help improve collaboration efforts and enhance preparedness for future wildfire seasons. 
    more » « less
  9. An exponential rise in the atmospheric vapour pressure deficit (VPD) is among the most consequential impacts of climate change in terrestrial ecosystems. Rising VPD has negative and cascading effects on nearly all aspects of plant function including photosynthesis, water status, growth and survival. These responses are exacerbated by land–atmosphere interactions that couple VPD to soil water and govern the evolution of drought, affecting a range of ecosystem services including carbon uptake, biodiversity, the provisioning of water resources and crop yields. However, despite the global nature of this phenomenon, research on how to incorporate these impacts into resilient management regimes is largely in its infancy, due in part to the entanglement of VPD trends with those of other co-evolving climate drivers. Here, we review the mechanistic bases of VPD impacts at a range of spatial scales, paying particular attention to the independent and interactive influence of VPD in the context of other environmental changes. We then evaluate the consequences of these impacts within key management contexts, including water resources, croplands, wildfire risk mitigation and management of natural grasslands and forests. We conclude with recommendations describing how management regimes could be altered to mitigate the otherwise highly deleterious consequences of rising VPD. 
    more » « less